Intramedullary nailing for calcaneal fractures: what are the available techniques? A review of the literature

Filippo Rosati Tarulli, Alessio Bernasconi, Antonio Izzo, Antonio Coviello, Francesco Smeraglia, Giovanni Balato, Massimo Mariconda

Department of Public Health, Trauma and Orthopaedics, University of Naples “Federico II”, Naples, Italy

Summary

Objective. Displaced intra-articular fractures of the calcaneus (DIACF) may be treated in several ways. In recent years, intramedullary locking devices (ILD) have been proposed with the aim to reduce complications and improve long-term results. In this regard, we have reviewed the literature in order to identify devices currently available and evaluate their characteristics.

Methods. Following a PRISMA checklist, Medline, Scopus and EMBASE databases were searched to identify studies reporting use of ILDs to treat DIACFs. In this review, only technical notes were included. Manuscripts selected were critically analysed in order to highlight common points and differences among surgical techniques.

Results. Overall, four technical notes dealing with ILDs were found, of which two concerned the Calcanail® (FH Orthopedics, Heimsbrunn, France) and two the C-Nail® implant (Medin, Nov. Město n. Moravě, Czech Republic). While the Calcanail® is stabilised by two screws and allows indirect reduction of the posterior facet, the C-Nail® involves direct visualisation of the joint space and use of multiple multi-directional screws to achieve final stabilisation.

Conclusions. Although similar in the design, the Calcanail® and the C-Nail® lead to the reduction and stabilisation of fragments through different mechanisms. In both cases the restoration of heel height and anatomical reduction of the subtalar joint are the primary goals of surgery.

Key words: calcaneus, fracture, displaced, subtalar, nail

Introduction

Calcaneal fractures are severe injuries, which represent 1 to 4% of all adult fractures. 1-2 If not diagnosed and treated promptly, they can cause long-term disability. In 60% to 80% of cases the fracture may present with an intra-articular pattern, ending up in joint incongruity which in turn may lead to functional impairment. 1,2 It has been clearly shown that adequate restoration of the articular surface is mandatory in order to increase the chances of a positive outcome. 3-6 The best treatment of displaced intra-articular calcaneal fractures (DIACF) is still debated. 7-10 The high rate of associated complications (hematoma, skin necrosis, soft tissue infection and osteitis), which has been reported in up to 35% of cases 9,11-15 has...
increased the interest towards techniques involving a percutaneous reduction and fixation 16-19.

Among the possible treatments, intramedullary nailing has been advocated as a possible option. The first description of an intramedullary locking device (ILD) for treating DIACFs was published in 2012 by Goldzak et al. 20. There have subsequently been a few studies showing encouraging results of ILDs for DIACFs which theoretically combine the advantages of minimally invasive surgery with stable fixation 21-30. A recent review has reported that treating DIAFCs with ILDs leads to satisfactory clinical outcomes at short-term follow-up, enabling restoration of calcaneal height and improved subtalar joint congruency 1. However, multiple devices have been introduced on the market, based on similar principles but different surgical techniques.

With this background, our aim was to identify the different surgical techniques proposed so far and to highlight similarities and differences between ILDs.

Methods

This review was designed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. This project was a sub-section of a larger investigation prospectively registered on the PROSPERO database of systematic reviews (CRD42019147815).

Eligibility criteria

We included technical notes reporting the use of ILD for treating DIACF, in English, French, Spanish, German and Italian. We excluded biomechanical studies, prospective or retrospective clinical studies, case reports, letters to the editor and studies on animals. Reviews were also excluded.

Data sources and search

A comprehensive electronic search of the current literature was performed using Medline, Scopus and EMBASE databases, from the earliest records through October 11, 2021. Additional studies were identified by checking the bibliographies of the articles selected. If full texts were not available, the authors were contacted. Using Boolean operators, the following search terms were used: calcane* AND fractur* AND fixat* AND nail*.

Study selection

Results were managed using Endnote. Duplicates and studies without abstracts were excluded. Titles and abstracts were screened by two authors (AB and FRT). After applying exclusion criteria, eligible studies were selected. Disagreements were resolved through discussion and consensus. Studies were critically analysed.

Summary measures and synthesis of results

As a narrative review, no formal statistical analysis was performed in this study.

Results

Four technical notes dealing with ILDs were found 20,23,24, of which two concerned the Calcanail® (FH Orthopedics, Heimbrunn, France) 20,23 (Fig. 1A) and two the C-Nail® implant (Medin, Nov. Město n. Moravě, Czech Republic) 24 (Fig. 1B).

Calcanail®

The technique utilising the Calcanail®, which includes intrafocal reduction and internal fixation, was reported in 2012 by Goldzak et al. from France, and subsequently by Saß et al. from Germany 20,23 (Fig. 1A). The first step of the procedure is the placement of two 3.2 mm K-wires, passing from lateral to medial, respectively in the posterior tuber and the lateral tubercle of the talus. A Caspar distractor is then fixed on these wires in order to mobilise the fragments bringing distally the great tuberosity and pushing proximally the subtal fragment against the talar surface, therefore restoring the Bohler angle and facilitating reduction of the depressed calcaneal joint surface. A skin incision is made posteriorly and inferiorly at the heel and a K-wire is positioned aiming towards the posterior facet of the subtal joint (in the sagittal plane) and the fourth metatarsals head (in the transverse plane). After removing a bone cylinder around the H-wire, a chamber is made, through which two specialised bone pushers (one straight and one curved) are passed. These are used to elevate the subchondral calcaneal side of the posterior subtal facet against the talar facet and to restore joint congruency. The nail (available in three lengths: 45 mm, 50 mm and 55 mm, with a diameter of 10 mm) is introduced into the chamber and stabilised by two locking screws passing from lateral to medial (Tab. I). Additional potential screws and K-wires can be used outside the nail should some other fragments require stabilisation.

C-Nail®

The technique utilising C-Nail® was reported in German by Zwipp et al. in 2013 and then in English in 2017 24 (Fig. 1B) to treat both intra- and extra-articular displaced calcaneal fractures. According to the technique, the subtal joint is exposed through a 3-cm sinus tarsi incision that runs from the tip of the distal fibula to the base of the fourth metatarsal, which allows the reduction of the posterior facet under direct visualisation using elevators and K-wires to stabilised the fragments. Two 3.5 mm or 4 mm cancellous screws are positioned from the lateral joint fragment to the sustentaculum tali under the joint surface to prevent articular collapse. A 6.5 mm Schanz screw is then inserted through the posterior tuberosity to manage the valgus and varus angulation, translation and inclination of the
Intramedullary nailing for calcaneal fractures: what are the available techniques? A review of the literature

calcaneus. If the anterior calcaneus is involved, a third screw may be used parallel to the calcaneocuboid joint. Then the posterior tuberosity fragment may be reduced using the aforementioned Schanz screw against the articular block and anterior process. After stabilising this construct with K-wires, a 1-cm incision is placed infero-laterally to the Achilles tendon distal insertion, and a guide-wire is positioned aiming towards the calcaneocuboid joint. A reamer is passed over the wire to create a channel for the implant (available only in a diameter of 8 mm and length of 65 mm, which is extendable using a cap between 5 and 20 mm). Up to 7 locking screws are used to stabilise the implant depending on fracture characteristics (Tab. I).

Discussion

The traditional approach to DIACF involves direct visualisation of the lateral calcaneal wall and fracture, anatomical reduction of the fracture and restoration of Bohler’s angle. The non-negligible risk of complications, such as wound infection, hematoma, sural nerve injury, fixation failure and need for revision surgery in up to 35% of patients 15,31-33 has encouraged to develop minimally-invasive techniques, aiming to restore the anatomy of the calcaneus with greater respect of soft tissues. According to what we found in this study, both commercially available ILDs have been thought to provide on-axis fixation, but they differ in a number of aspects. While the nail of the C-Nail® construct is not used to reduce the fracture (so that anatomical reduction is achieved with 3 or more locking screws through a mini lateral incision before the horizontal positioning of the nail 23,24, in the Calcanail® system the introduction of the nail itself should help reduce the articular surface and restore and maintain the correct joint height (Fig. 1C). Other relevant differences are represented by the positioning of the nail (horizontal in C-Nail®, oblique in Calcanail®), the number of locking screws (3 in C-Nail®, 2 in Calcanail®) and the possibility to convert the fixation of the fracture to a subtalar arthrodesis.

Looking at the current literature, a recent review which focused on biomechanical and clinical studies outlined how both ILDs seem to lead to good results 38. Biomechanically, both commercially available ILDs achieve satisfactory primary stability and in terms of absolute values and when compared to locking plates 26,28. From a clinical standpoint, after using ILDs partial weightbearing can be allowed after an average of 3 weeks, with short-term AOFAS-AHS and VAS scores similar to more ‘traditional’ surgery but with a reduced trauma for soft tissues 39,40. From the radiographic viewpoint, surgery utilising ILDs restores a Böhler angle close to reference values (between 22° and 50°) 40, comparing well with values obtained after the extensile lateral approach (between 24° and 31°) 40. The residual step-off of the posterior facet is reported as low as 0.8-1 mm, although this has only been assessed in two previous studies 24,30. For what concerns the complication rate of ILDs, according to the literature it is between 6 and 30% with metalware irritation (including implant protrusion on the plantar aspect of the foot and lateral prominence of locking screw head causing either skin or peroneal tendon irritation) nerve entrapment symptoms (usually self-limiting) reported up to 20 and 30% of cases, respectively, and subtalar arthrodesis required in 4 to 6% of patients 38. We acknowledge some limitations of this study. First, as a narrative review of surgical techniques, this study cannot pro-

Figure 1. A) Three-dimensional illustration of a subthalamic calcaneal fracture stabilised using a Calcanail®; B) three-dimensional illustration of a subthalamic calcaneal fracture stabilised using a C-Nail®; C) superimposition of two intramedullary locking devices (Calcanail® and C-Nail®) to illustrate the different positioning in the calcaneus.
vide a high level of evidence. However, although ILDs were introduced in practice almost a decade ago, their use is not widespread and we believe that our work could be useful to those with an interest in these techniques. Second, although we adopted a critical approach to the studies identified, we could compare the techniques only indirectly since we did not retrieve any previous direct comparative study. Third, in this study no statistical analysis was performed, which however could be expected given the narrative design of the analysis.

In conclusion, Calcanail® and C-Nail® can be used in the treatment of DIAFCs with the aim to restore the calcaneal height and improve subtalar joint congruency. Although different in

| Table I. Main differences between the Calcanail® and the C-Nail® in terms of surgical technique. |
|---|---------------------------------|---------------------------------|---------------------------------|
| Decubitus of the patient | C-Nail* | Calcanail® |
| Articular reduction | Lateral; contralateral knee flexed | Indirect, through Caspar distractor and graft pusher in the working channel; sinus tarsi approach only if needed |
| Hematoma | Cleared out | Usually not cleared |
| Posterior tuberosity | 6.5-mm cancellous Shanz screw on a T-handle | Calcaneal tuberosity pin |
| Temporary stabilisation | K-wires | K-wires |
| Final stabilisation of the posterior facet | 3.5 or 4.0-mm cancellous steel screws | Nail |
| Calcaneocuboid joint stabilisation (if needed) | 3.5 or 4.0-mm cancellous steel screws | NA |
| Nail | | |
| Sizes | Diameter 8 mm | Diameter 10 mm |
| | Length 65 mm, extendable using an end cap of 5 to 20 mm | Lengths 45, 50 and 55 mm (for subtalar joint arthrodesis: diameter 12 mm, lengths 65, 75 and 85 mm) |
| Insertion point | 10-mm vertical incision below the attachment of the Achilles tendon, slightly lateral | “through-the-heel-approach, 2 cm incision posterioly and inferiorly to the calcaneal tuberosity |
| Direction | Towards the center of the calcaneocuboid joint | Towards the base of the fourth metatarsal |
| Reaming | 8-mm drill over a guidewire | 10-mm trephine over the central drill guide |
| Potential issues | Introduce the K-wires so that there is no interference with the introduction of the nail | Introduce the K-wires so that there is no interference with the introduction of the nail |
| Rotation | In the correct position, the first K-wire positioned through the aiming device hits the sustentaculum tali | In the correct position, the target device allows to position 2 locking screws from lateral up to the medial wall |
| Locking | Up to 2 locking screws via the sustentaculum arm, 2 locking screws via the superior arm, and 2 to 3 locking screws via the lateral arm | 2 double-threaded locking screws |
| Post-operative management | Range of motion exercises on post-operative day 2 | Foot circle movements, weightbearing with crutches for 6 weeks |
| | Partial weightbearing of 20 kg for 6 to 10 weeks in normal shoes |
their design and surgical technique, they both provide the opportunity to reduce the stress on soft tissues (as compared to traditional lateral approaches) and to anticipate rehabilitation. Additional screws and/or K-wires can be used with both techniques to stabilise fragments not directly fixed by the nail itself.

Highlights

• Intramedullary locking nailing has been advocated as an option for treating displaced intra-articular fractures of the calcaneus.

• Two devices are currently available on the market: Calcana® and C-Nail®.

• In both cases, the aim of surgery is to reduce the fracture and to restore the anatomy of the subtalar joint.

• Although different in design and surgical technique, they both provide the opportunity to reduce the stress on soft tissues compared to traditional lateral approaches.

Acknowledgements

None.

Conflict of interest statement

The Authors declare no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

FRT: write the paper, study conception and design, generate figures; AB: write the paper, study conception and design, overall guidance. AI: revise draft; AC, FS, GB, MM: study conception.

Ethical consideration

The Ethics Committee approval was not requested for this review.

References

